from the editor

Neutrinos are complicated little beasties—far more so than physicist Wolfgang Pauli could have imagined. He introduced them in 1930 as a theoretical hack to save the law of conservation of energy, which appeared to be violated in some newly observed particle interactions.

Despite such an inauspicious beginning, the neutrino has risen to the status of particle physics' wonder-child. Nine of the thirteen most-cited papers in experimental high-energy physics concern neutrinos. Physicists have learned much about these creatures but the mysteries only seem to deepen with each new finding.

It should be no surprise that there is so much activity surrounding neutrinos. After all, they fracture the Standard Model of particle physics and interactions. The Model did not predict flavor change and non-zero masses, for example. Fortunately, neutrinos are accessible for study by new, albeit challenging, experiments.

The recent American Physical Society study, *The Neutrino Matrix*, provides a thorough analysis of the current state of neutrino physics, and makes a set of three specific recommendations on what would best advance the field.

This issue of *symmetry* focuses on aspects of neutrino physics, including experiments that dovetail with two of the *Neutrino Matrix* recommendations. These experiments attempt to answer: "What kind of particle is the neutrino?" and "How can neutrino masses be characterized?"

The promise of neutrinos is enticing. Their as-yet-unrevealed secrets could provide solutions to why there is more matter than antimatter in the universe, how mass comes to exist in our universe, and the origin and future of the sun's energy. Neutrinos are also driving more speculative ideas about the nature of dark energy and extra dimensions.

Having broken the Standard Model, can neutrinos also provide seeds for its next evolution? That seems likely. But, for now, theorists have more ideas than they know what to do with, and need experimental results to direct them toward resolution.

It is clear that neutrino physics has much to teach us about the universe. And these lessons far surpass the original promise of fixing a perceived accounting problem in the energy balance sheet of fundamental interactions.

David Harris Editor-in-Chief

Symmetry

PO Box 500 MS 206 Batavia Illinois 60510 USA

630 840 3351 telephone 630 840 8780 fax www.symmetrymagazine.org mail@symmetrymagazine.org

(c) 2005 symmetry All rights reserved

symmetry is published to times per year by Fermi National Accelerator Laboratory and Stanford Linear Accelerator Center, funded by the US Department of Energy Office of Science.

Editor-in-Chief

650 926 8580

Executive Editor

Mike Perricone

Managing Editor

Kurt Riesselmann

Web Editor

Staff Writers

La La constant

Eric Bland Matthew Early Wright

Publishers

Neil Calder, SLAC Judy Jackson, FNAL

Contributing Editors

Roberta Antolini, LNGS
Dominique Armand, IN2P3
Peter Barratt, PPARC
Stefano Bianco, LNF
Reid Edwards, LBNL
Petra Folkerts, DESY
Catherine Foster, ANL
Barbara Gallavotti, INFN
James Gillies, CERN
Silvia Giromini, LNF
Jacky Hutchinson, RAL
Youhei Morita, KEK
Marcello Pavan, TRIUMF
Mona Rowe, BNL
Yuri Ryabov, IHEP Protvino
Yves Sacquin, CEA-Saclay
Boris Starchenko, JINR
Maury Tigner, LEPP
Jacques Visser, NIKHEF
Linda Ware, JLab
Tongzhou Xu, IHEP Beijing

Print Design and Production

Sandbox Studio Chicago, Illinois

Art Director

Michael Branigan

Designers

Tara Kennedy Sharon Oiga

Web Design and Production

Hinsdale, Illinois

Web Architect Kevin Munday

Web Design

Karen Acklin

Web Programmer Mike Acklin

