Skip to main content

latest news

07/01/05

Collider detector

To understand the subatomic processes unfolding at the center of powerful particle collisions, scientists design and build huge, massive detectors.

06/30/05

Extra dimensions

In 1998, theorists Lisa Randall and Raman Sundrum met in a coffee shop in Boston to discuss how extra dimensions of space would change the predictions of particle theories.

05/01/05

Solar neutrinos

Deep in the Homestake Gold Mine in Lead, South Dakota, during the early 1970s, Ray Davis monitored a 100,000-gallon tank of perchloroethylene, a chlorine-rich dry-cleaning chemical.

05/01/05

The elusive neutrino

Not only are neutrinos hard to catch, but they also change form as they travel through space. New experiments hope to understand their chameleonic nature.

05/01/05

Virtual structure

As the newly-appointed Director of the Global Design Effort (GDE) for the proposed International Linear Collider (ILC), Barry Barish will lead teams of scientists worldwide in the research and development projects advancing the design of the next-generation discovery machine in high-energy physic

05/01/05

Searching for the neutrino's identity

Neutrinos are like no other particle in the universe. The more we learn about these "little neutral ones," the less we seem to understand them. Physicists do not even yet know what type of particle the neutrino is.

05/01/05

Springtime at Daresbury

How a quiet, unassuming laboratory in the northwest of England transformed itself into a powerhouse of accelerator physics and technology.

05/01/05

Chris Henschke: HyperCollider

In 1905, Albert Einstein published his Special Theory of Relativity and overthrew the notions of absolute space and time. His later General Theory of Relativity was so revolutionary that even he had trouble accepting its full implications.